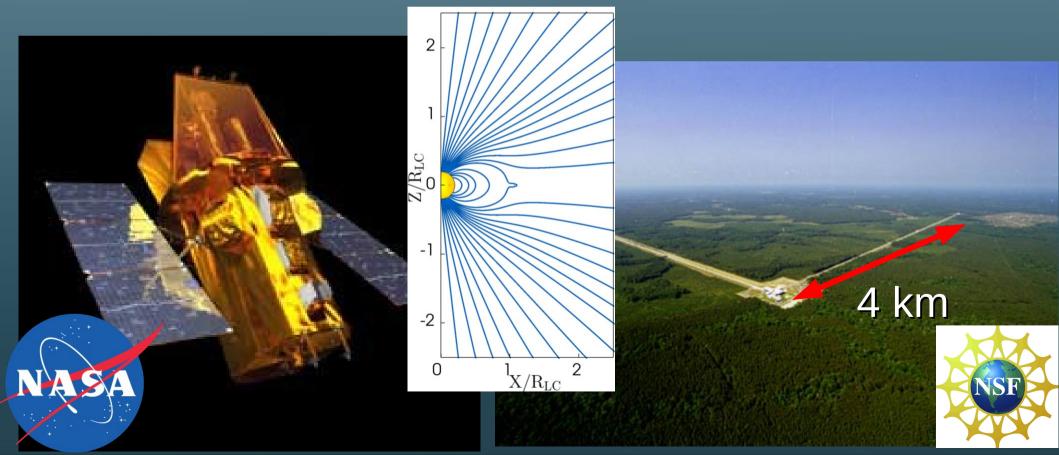
Electromagnetic Counterparts to Gravitational Wave Detections: Bridging the Gap between Theory and Observation

Prof. Zach Etienne, West Virginia University



- Special Relativity: Speed of light c is
 - the same, no matter how fast you move

• Special Relativity: Speed of light c is

the same, no matter how fast you move

Consequences

→ moving clocks tick more slowly
 → moving objects' length become squished
 → relativistic effects greatest if moving near c

Special Relativity: Speed of light c is

the same, no matter how fast you move

Consequences

→ moving clocks tick more slowly

- → moving objects' length become squished
- \rightarrow relativistic effects greatest if moving near c

General Relativity:

• Einstein's great insight: The opposite holds true!

• Special Relativity: Speed of light c is

the same, no matter how fast you move

Consequences

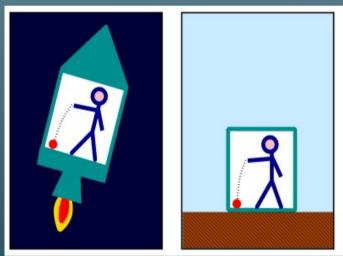
- → moving clocks tick more slowly
- → moving objects' length become squished
- \rightarrow relativistic effects greatest if moving near c

General Relativity:

- Einstein's great insight: The opposite holds true!
- Gravity: Massive objects
 - Slow down time & squish space around them, leading to permanent acceleration field

Theory of <u>General</u> Relativity

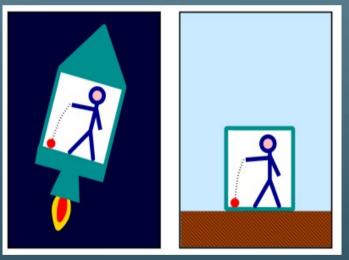
- Assumes <u>special</u> relativity is true, in addition:
 - A gravitational acceleration is the same as a normal acceleration: "Equivalence Principle"



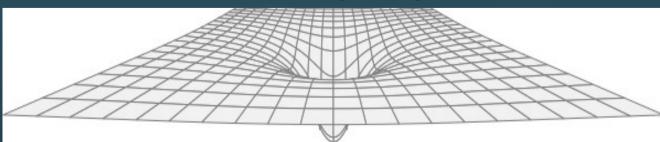
Theory of <u>General</u> Relativity

• Assumes <u>special</u> relativity is true, in addition:

• A gravitational acceleration is the same as a normal acceleration: "Equivalence Principle"

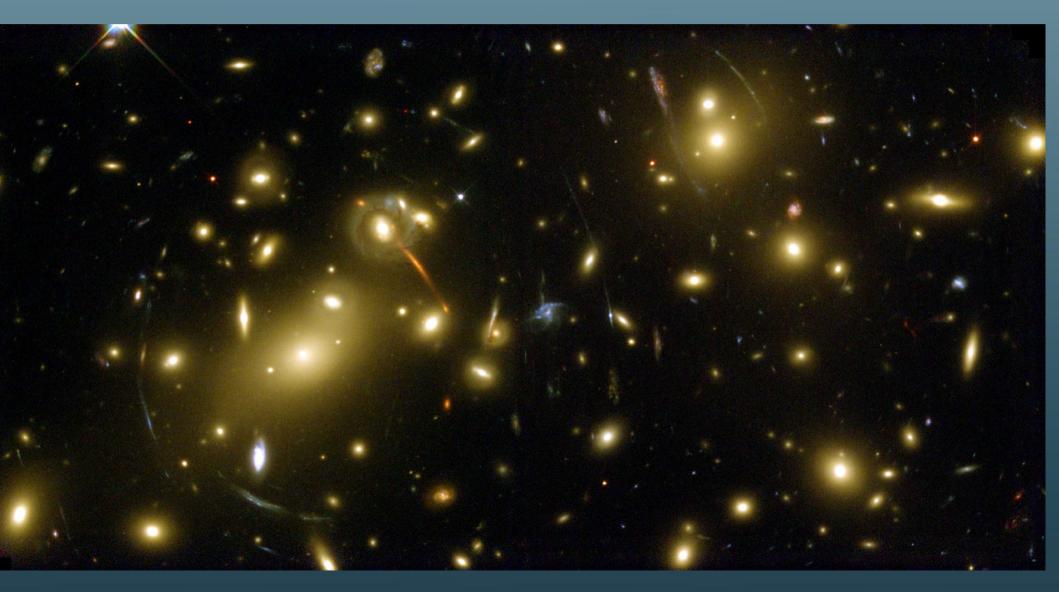


- Consequence:
 - Gravity = "permanent acceleration around anything with mass"
 - Curving space, and
 - Slowing down time



Theory of <u>General</u> Relativity: Summary

- Gravity curves space & slows down time
 - Clocks on ground tick more slowly than those in hot air balloon
 - Meter sticks standing on ground are shorter than those in hot air balloon
 - Path of light *bends* when traveling around massive object



Newtonian Gravity:

• Information about changing gravitational fields propagates *infinitely* fast

General Relativity:

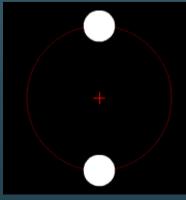
• Information about changing gravitational fields propagates at c, results in gravitational waves

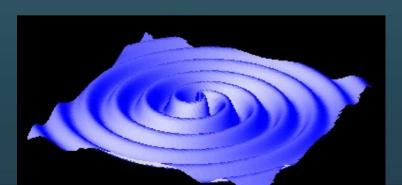
• Newtonian Gravity:

• Information about changing gravitational fields propagates *infinitely* fast

General Relativity:

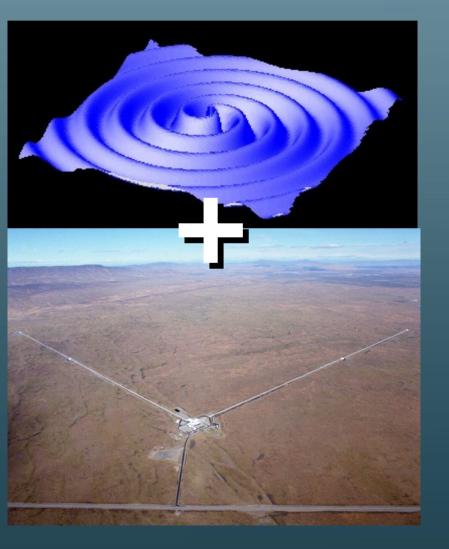
- Information about changing gravitational fields propagates at c, results in gravitational waves
- Binary system:
 - Gravitational waves carry away orbital energy & angular momentum

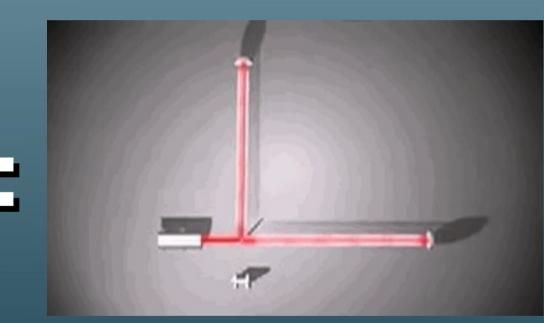


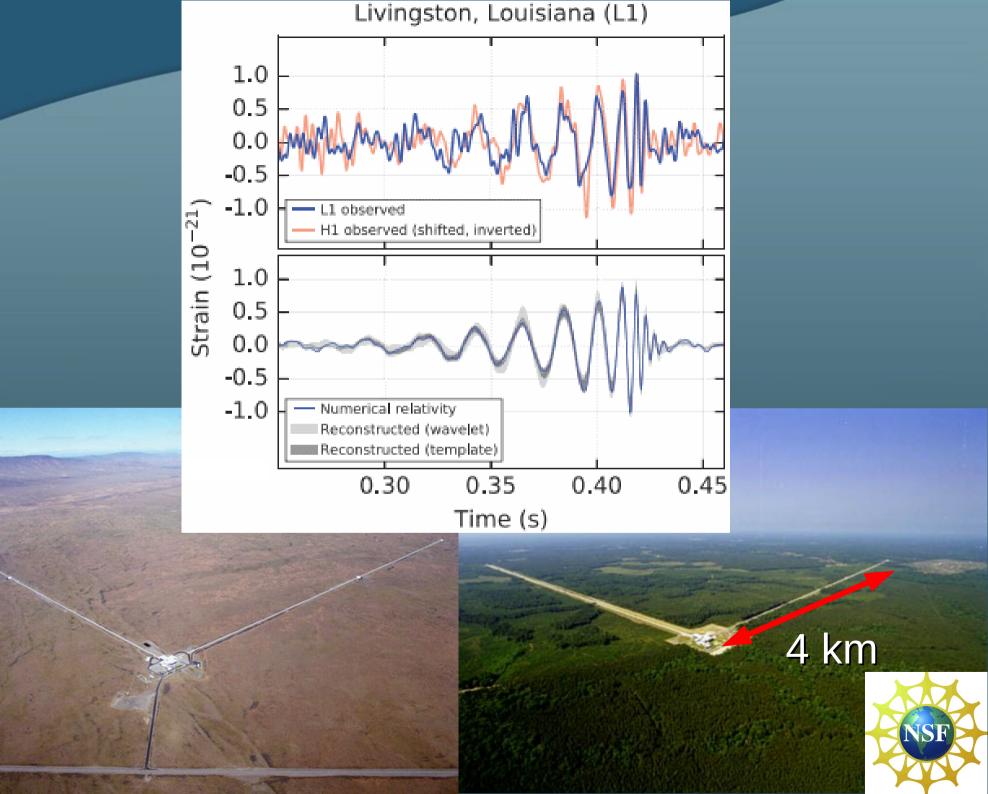


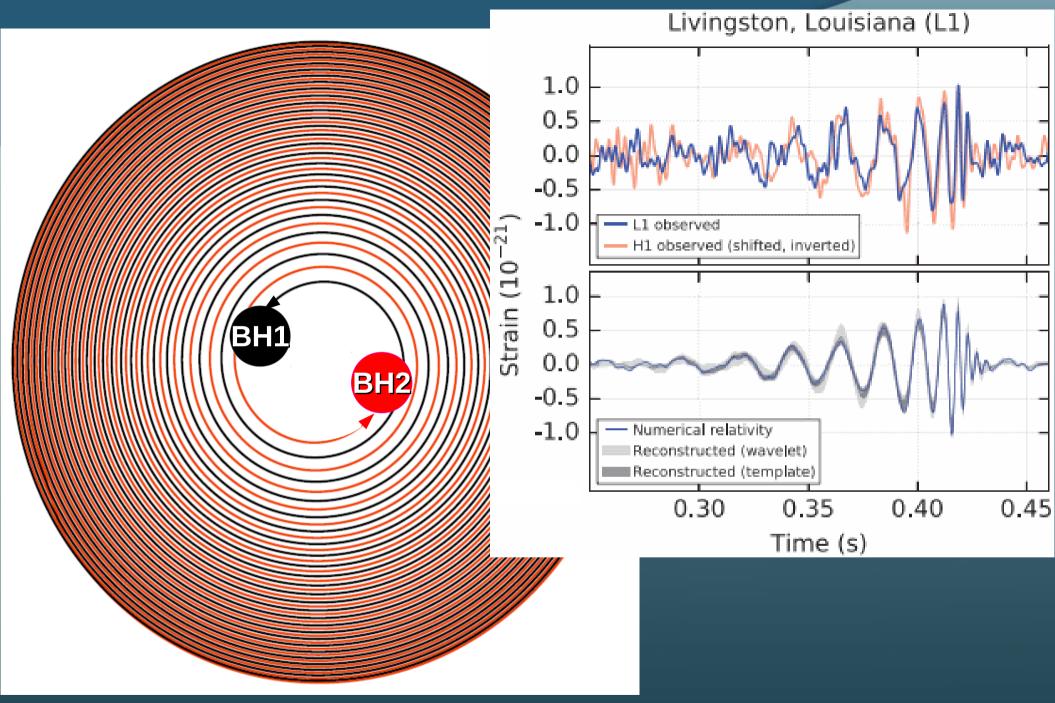
- Strongest waves from objects orbiting near c
 - Black holes & neutron stars; Sun-like \rightarrow destroyed
- These waves detectable, but extremely weak!
 - LIGO: About 1/1000 width of proton

What happens when gravitational waves pass through the detector?

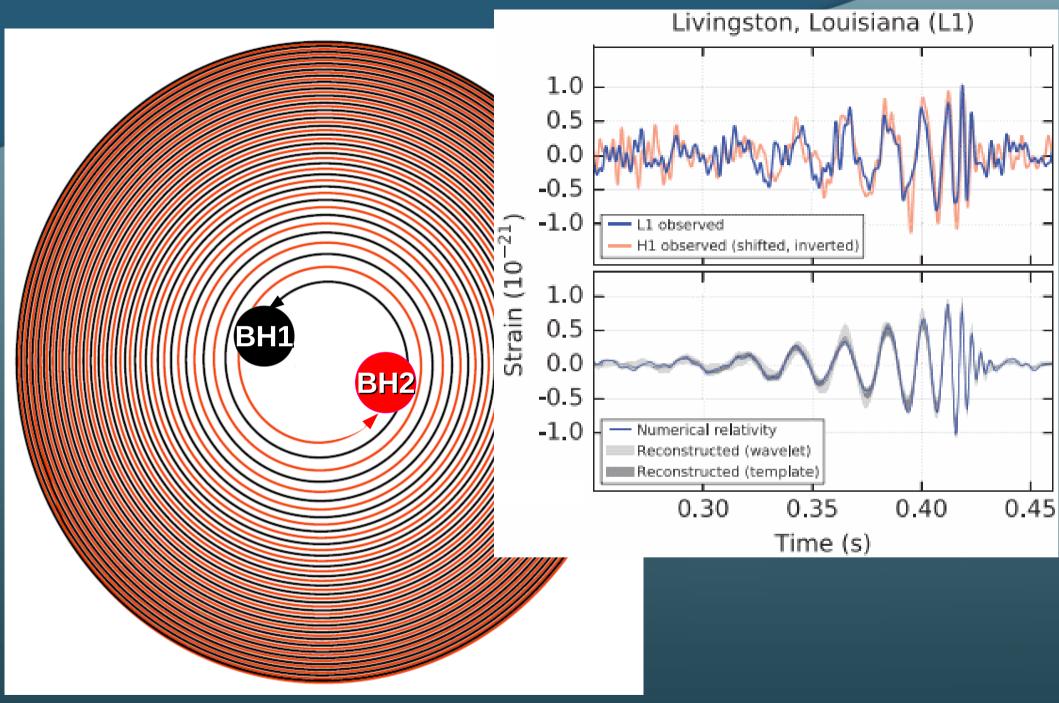








(original image: Lovelace et al., CQG 29, 045003 (2012))



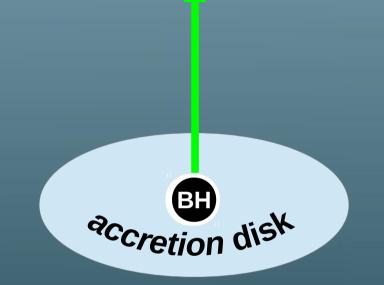
(original image: Lovelace et al., CQG 29, 045003 (2012))

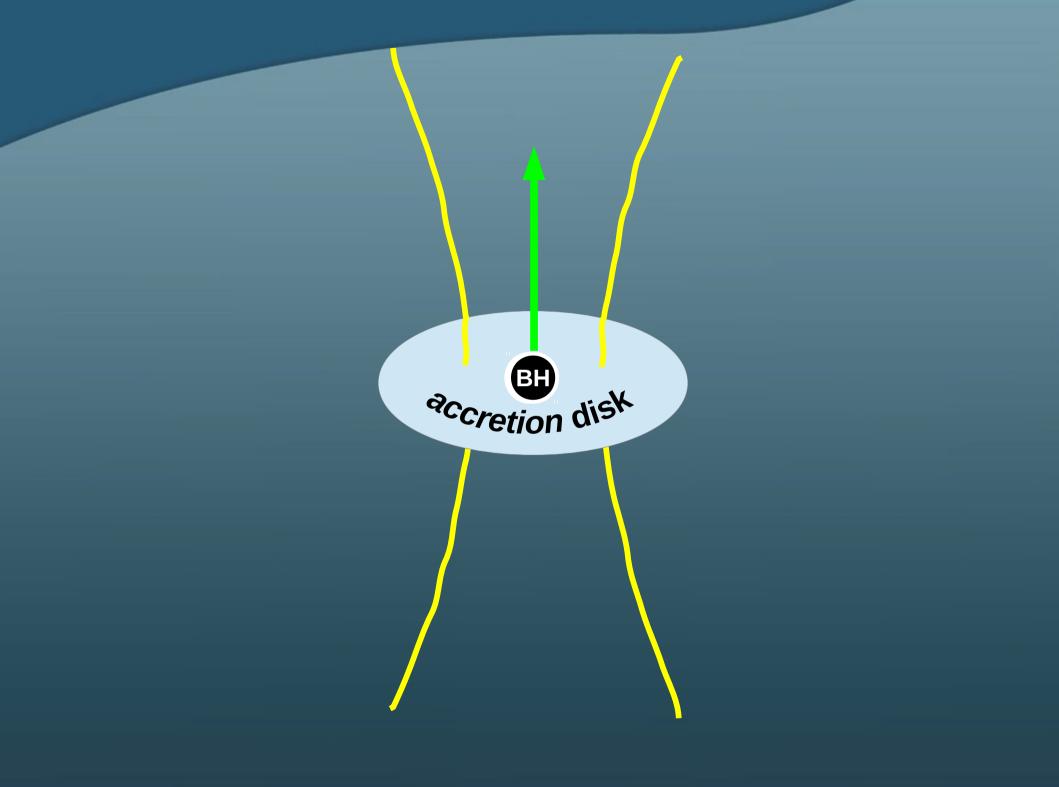
What remains to be seen?

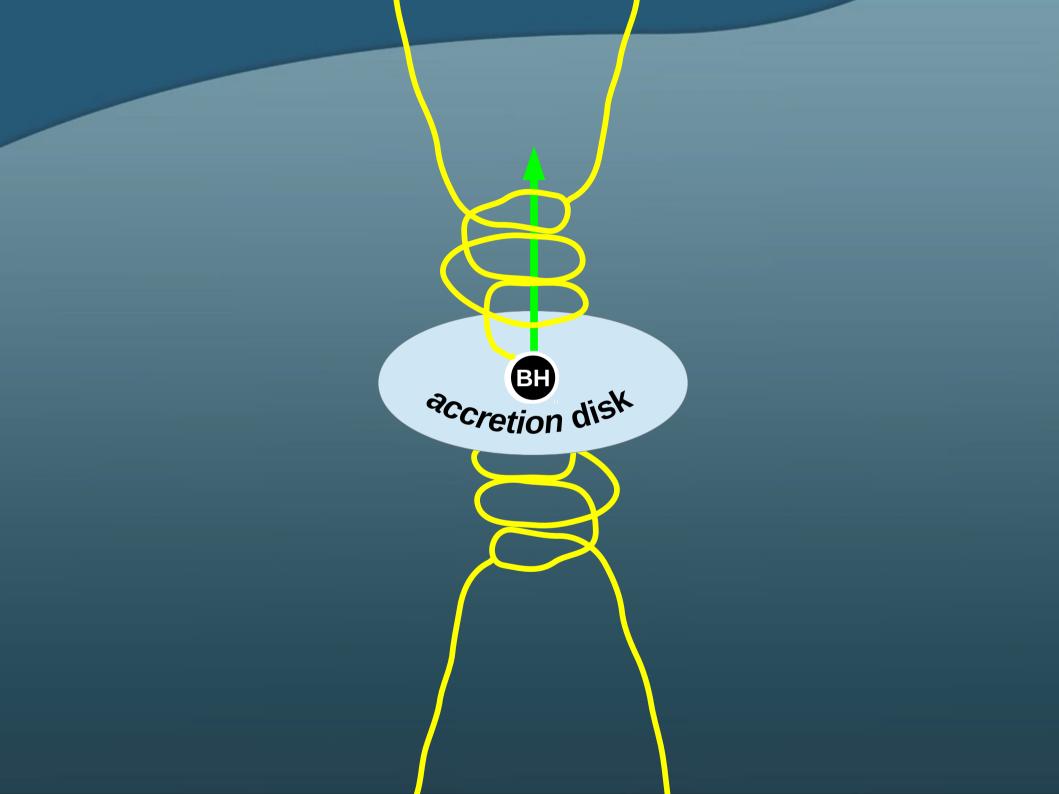
APEX, Chandra, MPG/ESO

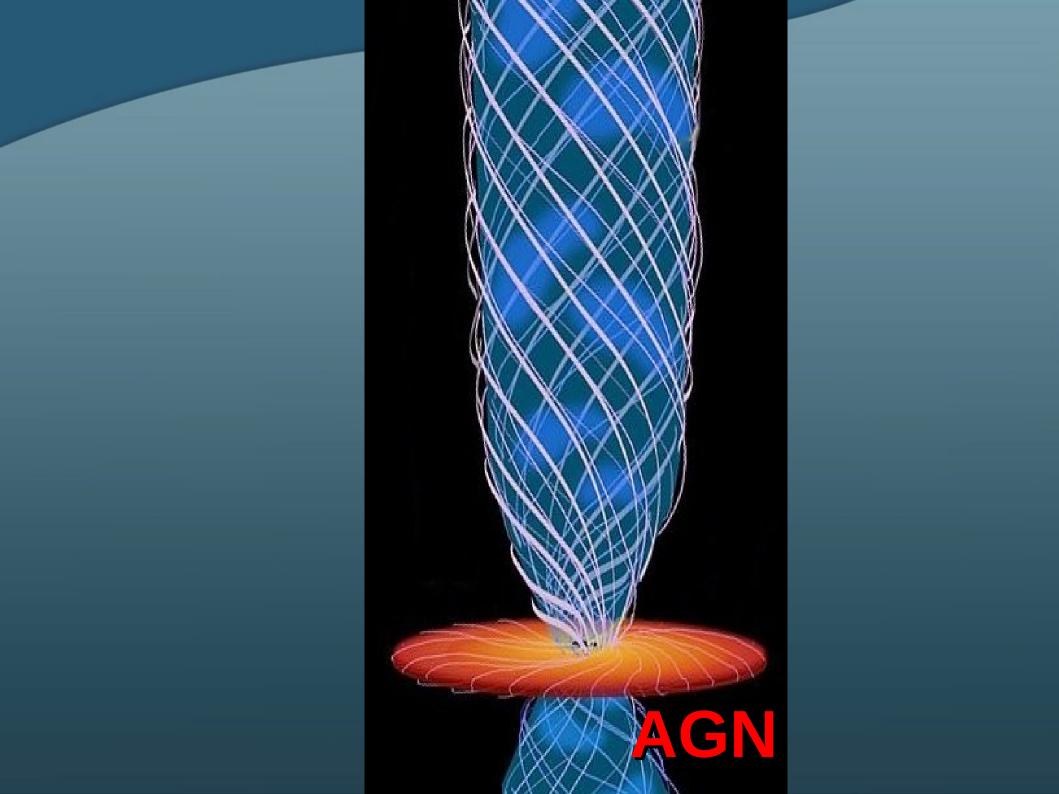
APEX, Chandra, MPG/ESO

AGN: How does it work?



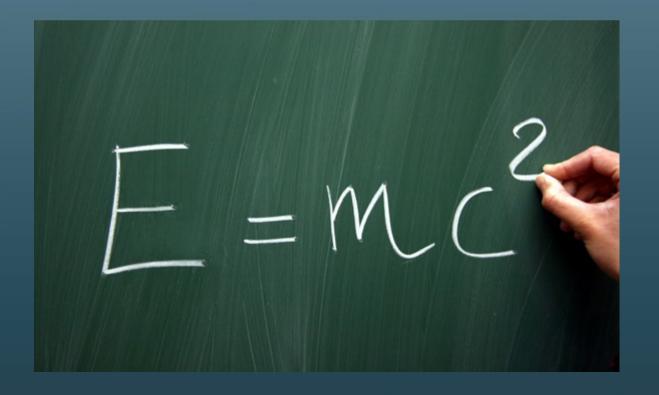






Mass-to-Energy Conversion Efficiency

- Typical stars:
- Black hole accretion: ~10%

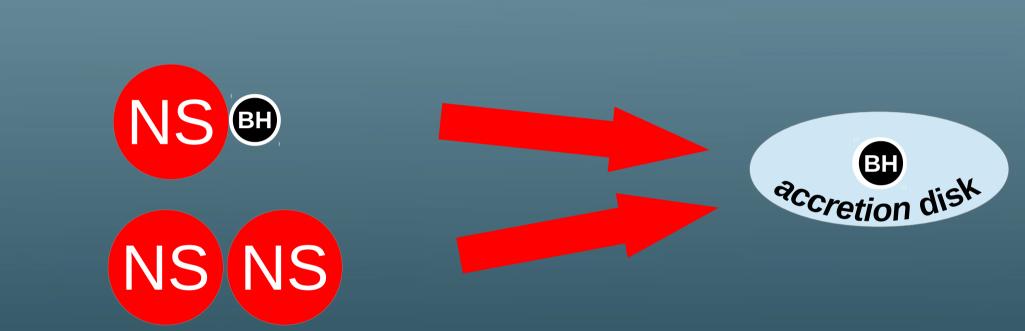


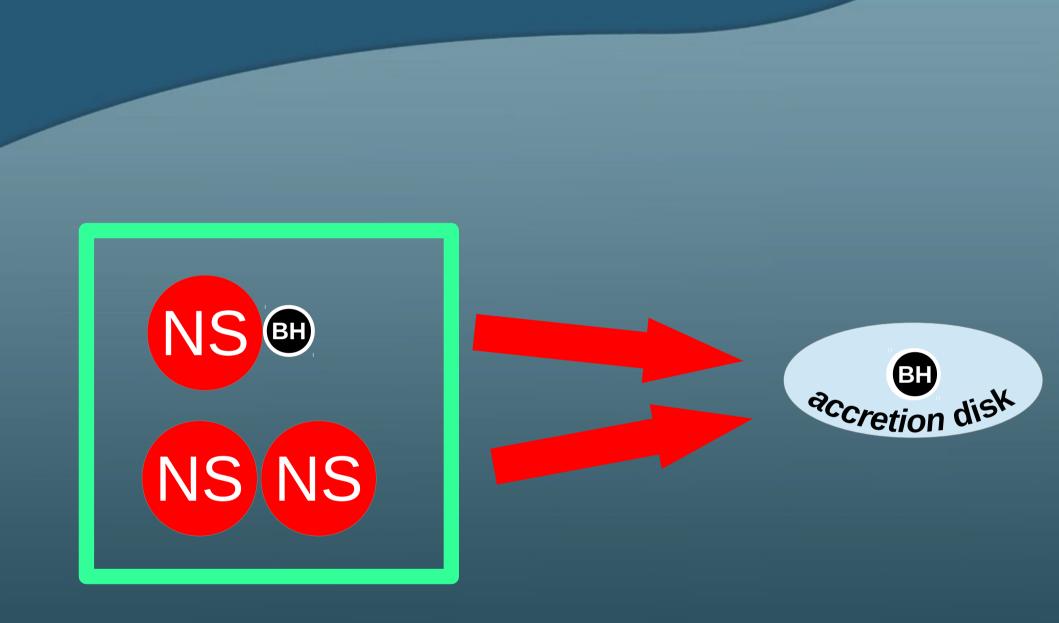
~0.02%

To get this enormously efficient release of EM energy

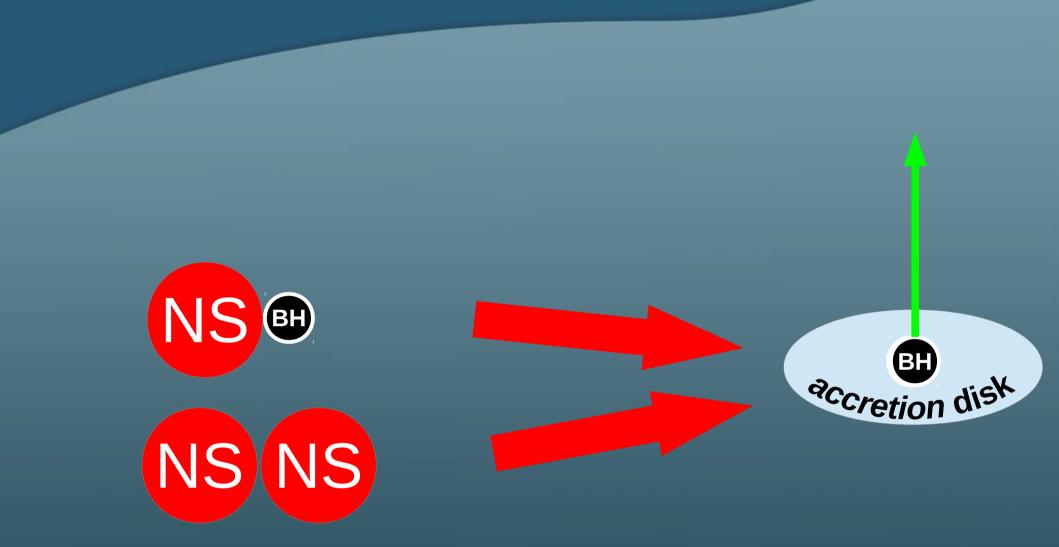
... required only a (spinning) BH+disk:

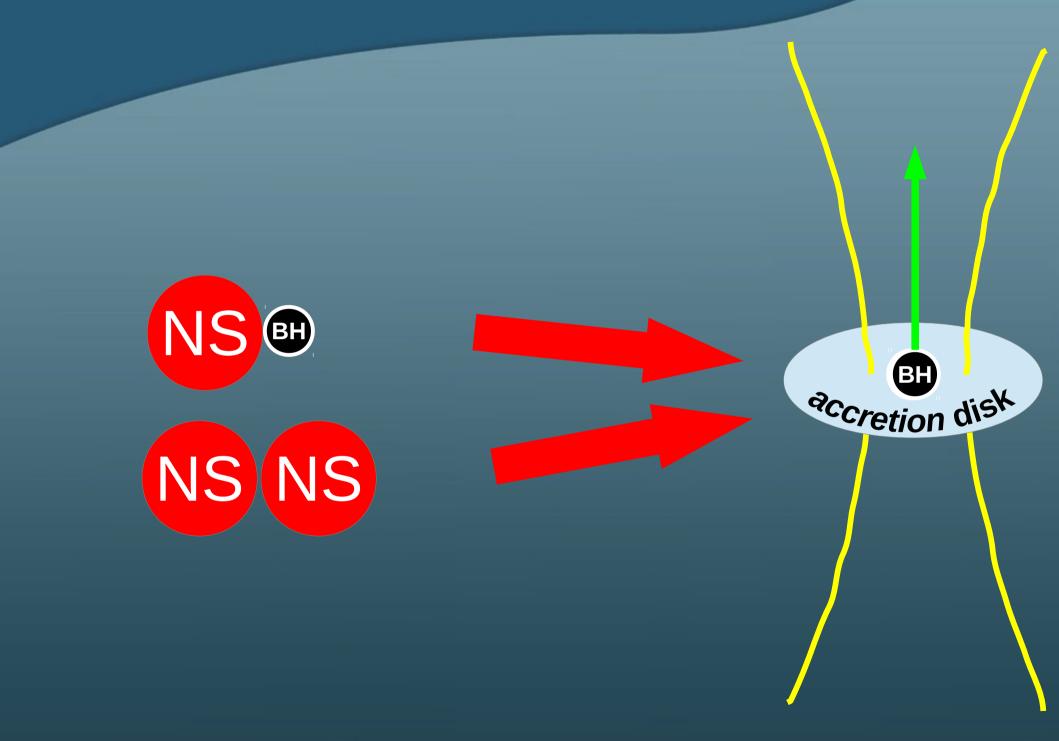
What other systems result in a BH+disk?

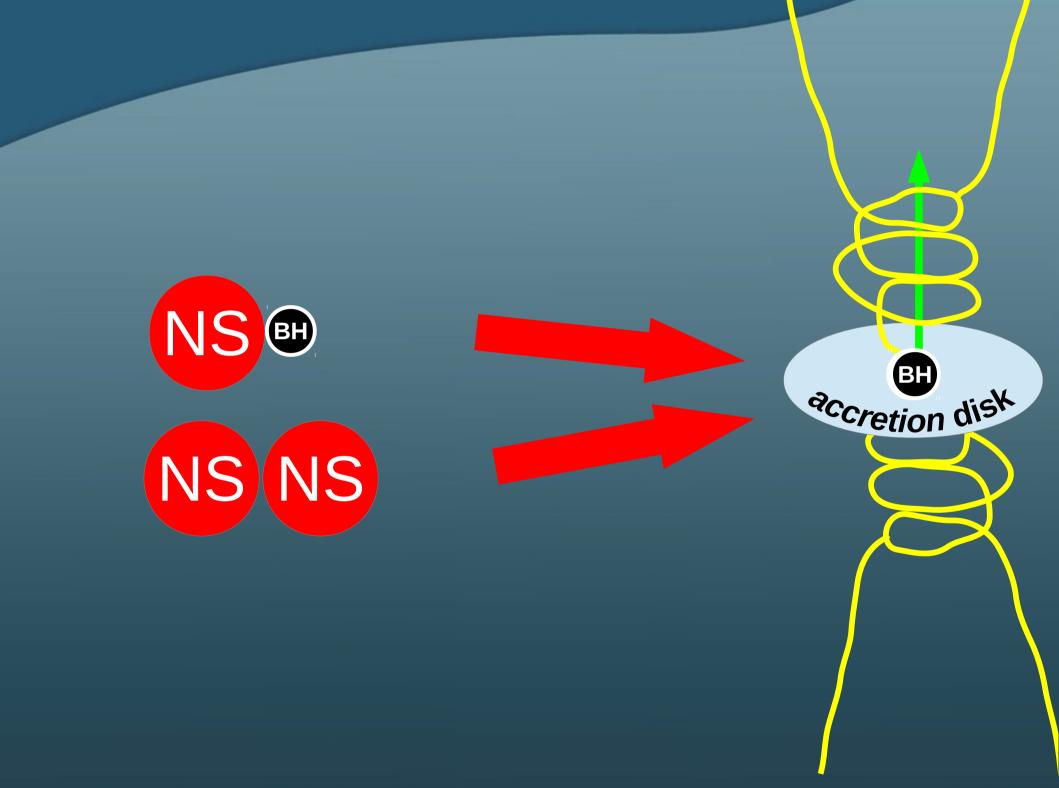




Detectable by LIGO!







NS NS

(Short) GRB

Short Gamma-Ray Bursts

- Found in regions thought rich in NSs & BHs
 - Host galaxy populated by older stars
 - \rightarrow Most massive stars long dead, leaving behind NSs and BHs

Observationally consistent! But what do our best theoretical models say?

NS NS

GR

Newtonian

Equations for gravitational field

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

$$\nabla^2 \Phi = -4 \pi \rho$$

Maxwell's equations in MHD limit

$$\partial_{j} \left(\sqrt{\gamma} B^{j} \right) = 0 \qquad \nabla \cdot B = 0$$

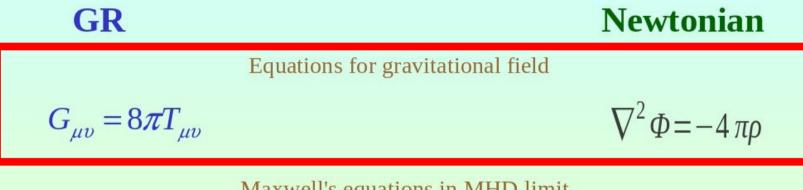
$$\partial_{t} \left(\sqrt{\gamma} B^{i} \right) + \partial_{j} \left[\sqrt{\gamma} \left(\mathbf{v}^{j} B^{i} - \mathbf{v}^{i} B^{j} \right) \right] = 0 \qquad \partial_{t} B = \nabla \times \left(\mathbf{v} \times B \right)$$

Fluid equations

$$\partial_{t} \rho + \nabla \cdot (\rho v) = 0$$

$$\rho \left(\partial_{t} v + v \cdot \nabla v \right) = -\nabla \left(P + \frac{B^{2}}{8\pi} \right) + \frac{B \cdot \nabla B}{4\pi} - \rho \nabla \Phi$$

$$\rho \left(\partial_{t} \varepsilon + v \cdot \nabla \varepsilon \right) + P \nabla \cdot v = 0$$



Maxwell's equations in MHD limit

$$\partial_{j} \left(\sqrt{\gamma} B^{j} \right) = 0 \qquad \nabla \cdot B = 0$$

$$\partial_{t} \left(\sqrt{\gamma} B^{i} \right) + \partial_{j} \left[\sqrt{\gamma} \left(\mathbf{v}^{j} B^{i} - \mathbf{v}^{i} B^{j} \right) \right] = 0 \qquad \partial_{t} B = \nabla \times \left(\mathbf{v} \times B \right)$$

Fluid equations

 $\begin{aligned} \partial_{t} \rho_{*} + \partial_{j} \left(\rho_{*} \mathbf{v}^{j} \right) &= 0 & \partial_{t} \rho + \nabla \cdot \left(\rho \mathbf{v} \right) &= 0 \\ \partial_{t} S_{i} + \partial_{j} \left(\alpha \sqrt{\gamma} T^{j}{}_{i} \right) &= \frac{1}{2} \alpha \sqrt{\gamma} T^{\alpha \beta} \partial_{i} g_{\alpha \beta} & \rho \left(\partial_{t} \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= -\nabla \left(P + \frac{B^{2}}{8\pi} \right) + \frac{B \cdot \nabla B}{4\pi} - \rho \nabla \Phi \\ \partial_{t} \tau + \partial_{j} \left(-n_{\mu} \alpha \sqrt{\gamma} T^{\mu i} - \rho_{*} \mathbf{v}^{j} \right) &= s & \rho \left(\partial_{t} \varepsilon + \mathbf{v} \cdot \nabla \varepsilon \right) + P \nabla \cdot \mathbf{v} = 0 \end{aligned}$

GR

Newtonian

Equations for gravitational field

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

$$\nabla^2 \Phi = -4 \pi \rho$$

 $\partial_t B = \nabla \times (v \times B)$

 $\nabla \cdot B = 0$

Maxwell's equations in MHD limit

$$\partial_{j} \left(\sqrt{\gamma} B^{j} \right) = 0$$
$$\partial_{t} \left(\sqrt{\gamma} B^{i} \right) + \partial_{j} \left[\sqrt{\gamma} \left(\mathbf{v}^{j} B^{i} - \mathbf{v}^{i} B^{j} \right) \right] = 0$$

Fluid equations

 $\partial_{t} \rho_{*} + \partial_{j} \left(\rho_{*} \mathbf{v}^{j} \right) = 0$ $\partial_{t} S_{i} + \partial_{j} \left(\alpha \sqrt{\gamma} T^{j}{}_{i} \right) = \frac{1}{2} \alpha \sqrt{\gamma} T^{\alpha \beta} \partial_{i} g_{\alpha \beta}$ $\partial_{t} \tau + \partial_{j} \left(-n_{\mu} \alpha \sqrt{\gamma} T^{\mu i} - \rho_{*} \mathbf{v}^{j} \right) = s$

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho v) &= 0 \\ \rho \left(\partial_t v + v \cdot \nabla v \right) &= -\nabla \left(P + \frac{B^2}{8\pi} \right) + \frac{B \cdot \nabla B}{4\pi} - \rho \nabla \Phi \\ \rho \left(\partial_t \varepsilon + v \cdot \nabla \varepsilon \right) + P \nabla \cdot v &= 0 \end{split}$$

GR

Newtonian

Equations for gravitational field

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

$$\nabla^2 \Phi = -4 \pi \rho$$

Maxwell's equations in MHD limit

 $\partial_{j} \left(\sqrt{\gamma} B^{j} \right) = 0$ $\partial_{t} \left(\sqrt{\gamma} B^{i} \right) + \partial_{j} \left[\sqrt{\gamma} \left(\mathbf{v}^{j} B^{i} - \mathbf{v}^{i} B^{j} \right) \right] = 0$

 $\nabla \cdot B = 0$ $\partial_t B = \nabla \times (v \times B)$

Fluid equations $\partial_{t} \rho_{*} + \partial_{j} \left(\rho_{*} \mathbf{v}^{j} \right) = 0 \qquad \qquad \partial_{t} \rho + \nabla \cdot \left(\rho \mathbf{v} \right) = 0$ $\partial_{t} S_{i} + \partial_{j} \left(\alpha \sqrt{\gamma} T^{j}{}_{i} \right) = \frac{1}{2} \alpha \sqrt{\gamma} T^{\alpha \beta} \partial_{i} g_{\alpha \beta} \qquad \rho \left(\partial_{t} \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \left(P + \frac{B^{2}}{8\pi} \right) + \frac{B \cdot \nabla B}{4\pi} - \rho \nabla \Phi$ $\partial_{t} \tau + \partial_{j} \left(-n_{\mu} \alpha \sqrt{\gamma} T^{\mu i} - \rho_{*} \mathbf{v}^{j} \right) = s \qquad \rho \left(\partial_{t} \varepsilon + \mathbf{v} \cdot \nabla \varepsilon \right) + P \nabla \cdot \mathbf{v} = 0$

Missing Physics: Proper magnetosphere modeling (Ideal MHD eqs. become stiff in magnetospheres) Neutrinos (no cooling) Photons (no spectra)

$$\partial_{j} \left(\sqrt{\gamma} B^{j} \right) = 0$$

$$\partial_{t} \left(\sqrt{\gamma} B^{i} \right) + \partial_{j} \left[\sqrt{\gamma} \left(\mathbf{v}^{j} B^{i} - \mathbf{v}^{i} B^{j} \right) \right] = 0$$

$$\nabla \cdot B = 0$$

$$\partial_t B = \nabla \times (v \times B)$$

Fluid equations

 $\partial_{t} \rho_{*} + \partial_{j} \left(\rho_{*} \mathbf{v}^{j} \right) = 0$ $\partial_{t} S_{i} + \partial_{j} \left(\alpha \sqrt{\gamma} T^{j}{}_{i} \right) = \frac{1}{2} \alpha \sqrt{\gamma} T^{\alpha \beta} \partial_{i} g_{\alpha \beta}$ $\partial_{t} \tau + \partial_{j} \left(-n_{\mu} \alpha \sqrt{\gamma} T^{\mu i} - \rho_{*} \mathbf{v}^{j} \right) = s$

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho v) &= 0 \\ \rho \left(\partial_t v + v \cdot \nabla v \right) &= -\nabla \left(P + \frac{B^2}{8\pi} \right) + \frac{B \cdot \nabla B}{4\pi} - \rho \nabla \Phi \\ \rho \left(\partial_t \varepsilon + v \cdot \nabla \varepsilon \right) + P \nabla \cdot v &= 0 \end{split}$$

Missing Physics: <u>Proper magnetosphere modeling</u> (Ideal MHD eqs. become stiff in magnetospheres) Neutrinos (no cooling) Photons (no spectra)

$$\partial_{j} \left(\sqrt{\gamma} B^{j} \right) = 0$$

$$\partial_{t} \left(\sqrt{\gamma} B^{i} \right) + \partial_{j} \left[\sqrt{\gamma} \left(\mathbf{v}^{j} B^{i} - \mathbf{v}^{i} B^{j} \right) \right] = 0$$

Fluid equations

 $\partial_{t} \rho_{*} + \partial_{j} \left(\rho_{*} \mathbf{v}^{j} \right) = 0$ $\partial_{t} S_{i} + \partial_{j} \left(\alpha \sqrt{\gamma} T^{j}{}_{i} \right) = \frac{1}{2} \alpha \sqrt{\gamma} T^{\alpha \beta} \partial_{i} g_{\alpha \beta}$ $\partial_{t} \tau + \partial_{j} \left(-n_{\mu} \alpha \sqrt{\gamma} T^{\mu i} - \rho_{*} \mathbf{v}^{j} \right) = s$

$$\partial_{t} \rho + \nabla \cdot (\rho v) = 0$$

$$\rho \left(\partial_{t} v + v \cdot \nabla v \right) = -\nabla \left(P + \frac{B^{2}}{8\pi} \right) + \frac{B \cdot \nabla B}{4\pi} - \rho \nabla \Phi$$

$$\rho \left(\partial_{t} \varepsilon + v \cdot \nabla \varepsilon \right) + P \nabla \cdot v = 0$$

 $\nabla \cdot B = 0$

 $\partial_{,B} = \nabla \times (v \times B)$

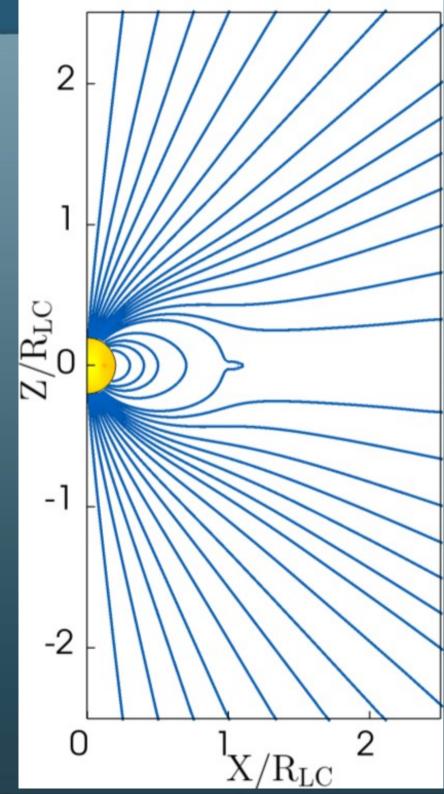
Giraffe

General Relativistic Force-Free Electrodynamics

- Gravitational waves (GWs) drive black holes and neutron stars to inspiral and merge
 - \rightarrow Exterior magnetic fields change rapidly
 - \rightarrow Possible EM counterpart to GW signal!
- Such EM counterparts could yield deep insights into these extreme objects
 - But we need firmer theoretical foundation for modeling them
- **GiRaFFE**: Solves equations of general relativistic force-free electrodynamics (GRFFE), needed to realistically model such counterparts

GiRaFFE Results: Simple pulsar model

Starting with initial dipole field, magnetic field lines (blue) open at the light cylinder (X/R_LC = 1), due to rotation of magnetized star (yellow)



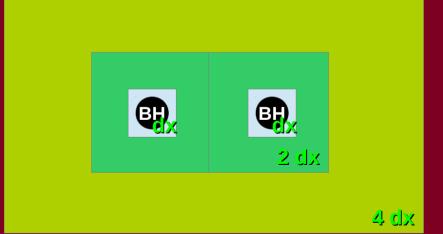
Missing Physics:

Proper magnetosphere modeling (Ideal MHD eqs. become stiff in magnetospheres) Neutrinos (no cooling) Photons (no spectra)

Why not add everything now? Short answer: Current simulations are $\partial_t (\sqrt{\gamma})$ extremely computationally expensive, and **CPUs are not getting faster** (Moore's Law has ended) $\partial_t \rho_* + \partial_t \rightarrow Can't$ add new physics without greatly improving efficiency $\partial_t S_i + \partial$ The future lies in developing more $\partial_{\tau}\tau + \partial$ efficient algorithms

AMR

Adaptive Mesh Refinement (Most Popular Method in NR)



8 dx

16 dx, etc

AMR

Adaptive Mesh Refinement (Most Popular Method in NR)

8 dx

16 dx, etc

Near-Spherical Object

- Highest res needed in radial dirn, need 1/3—1/10 points in angular directions Cost: Nr*Ntheta*Nphi ~ 1/100 Nr³ → 1/10 Nr³
- Cartesian grid: need dx=dy=dz=dr. Cost: Nx*Ny*Nz ~ Nr³
- So far, spherical polar grid ~ 10-100x more efficient than Cartesian

Near-Spherical Object

- Highest res needed in radial dirn, need 1/3—1/10 points in angular directions Cost: Nr*Ntheta*Nphi ~ 1/100 Nr³ → 1/10 Nr³
- Cartesian grid: need dx=dy=dz=dr. Cost: Nx*Ny*Nz ~ Nr³
- So far, spherical polar grid ~ 10-100x more efficient than Cartesian



What about dr along diagonal?

- Cube diagonal = √3*sidelength → to get dr resolution in all directions, need to reduce dx,dy,dz by √3
- Since cost in memory ~1/dx³, "fitting the round peg in a square hole" increases cost by another factor of (√3)³~5x!

Near-Spherical Object

- Highest res needed in radial dirn, need 1/3—1/10 points in angular directions Cost: Nr*Ntheta*Nphi ~ 1/100 Nr³ → 1/10 Nr³
- Cartesian grid: need dx=dy=dz=dr. Cost: Nx*Ny*Nz ~ Nr³
- So far, spherical polar grid ~ 10-100x more efficient than Cartesian

What about dr along diagonal?

- Cube diagonal = √3*sidelength → to get dr resolution in all directions, need to reduce dx,dy,dz by √3
- Since cost in memory ~1/dx³, "fitting the round peg in a square hole" increases cost by another factor of (√3)³~5x!

AMR Box Boundary is a Cube...

- ... but fields fall off radially!
- → region outside orange circle is over-resolved by 2x
- Total volume of over-resolved region = 8-4/3 pi ~ 3.8 = about half the cube!
- So we gain by about another factor of 1.9x.



<u>AMR Box side-</u> length = 2

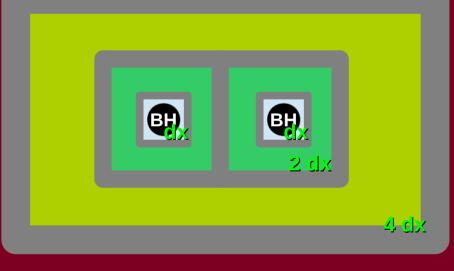
AMR Box Boundary is a Cube...

- ... but fields fall off radially!
- → region outside orange circle is over-resolved by 2x
- Total volume of over-resolved region = 8-4/3 pi ~ 3.8 = about half the cube!
- So we gain by about another factor of 1.9x.

<u>AMR Box side-</u> length = 2

AMR

Adaptive Mesh Refinement (Most Popular Method in NR)



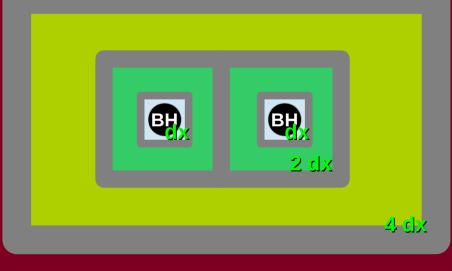
AMR

- Information must be interpolated across refinement boundaries.
- Interpolation → grids must overlap
- Overlap regions (grey) can take up 50% of overall computational domain!

8 dx

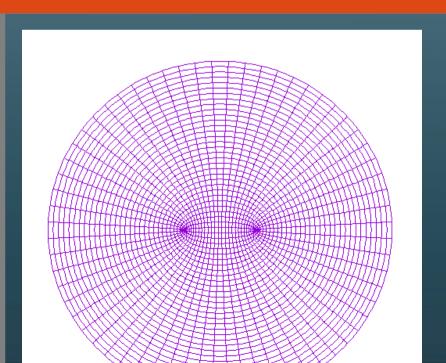
AMR

Adaptive Mesh Refinement (Most Popular Method in NR)



AMR

- Information must be interpolated across refinement boundaries.
- Interpolation → grids must overlap
- Overlap regions (grey) can take up 50% of overall computational domain!



AMR Box Boundary is a Cube...

- ... but fields fall off radially!
- → region outside orange circle is over-resolved by 2x
- Total volume of over-resolved region = 8-4/3 pi ~ 3.8 = about half the cube!
- So we gain by about another factor of 1.9x.



High-order finite difference with AMR

- → Enormous number of ghost zones at refinement boundaries!
- Ghost zones can take up 50% of overall computational domain!
- Bispherical coordinate system: Gain another ~2x

AMR Box Boundary is a Cube...

- ... but fields fall off radially!
- → region outside orange circle is over-resolved by 2x
- Total volume of over-resolved region = 8-4/3 pi ~ 3.8 = about half the cube!
- So we gain by about another factor of 1.9x.

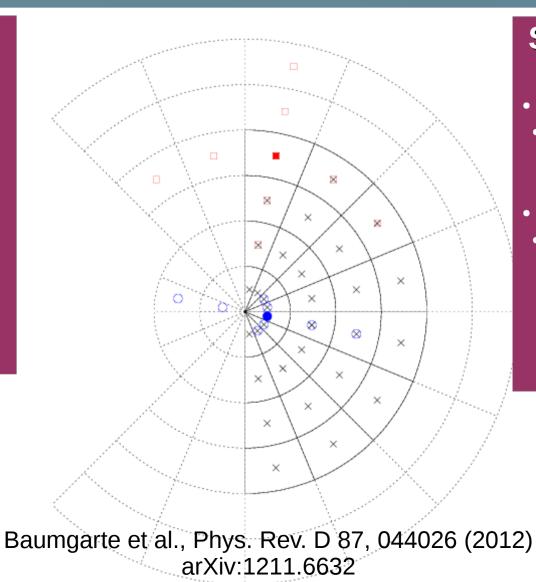
High-order finite difference with AMR

- → Enormous number of ghost zones at refinement boundaries!
- Ghost zones can take up 50% of overall computational domain!
- Bispherical coordinate system: Gain another ~2x

Idea: Move to Spherical Polar Coordinates!

Cartesian Coordinates:

- Advantage:
 Well-behaved numerically
- Disadvantage:
- ~200—2,000x inefficient in computational cost, memory overhead



Spherical Polar Coordinates:

- Advantage:
 - Very inexpensive computationally!
- Disadvantage:
- Stability issues?

Recent breakthroughs address stability issues!

Idea: Move to Spherical Polar Coordinates!

Fully Explicit Runge-Kutta 0.030 -5 0.025 -6 0.020 -7 0.015 -8 0.010 -9 0.005 0.000 -10 0 2 4 6 8 10

$$\partial_t^2 u = \partial_r^2 u + \frac{2}{r} \partial_r u$$

<u>Coordinate singularities</u> lead to instabilities in traditional numerical schemes (e.g., 1+1 spherical scalar wave in RK2)

Idea: Move to Spherical Polar Coordinates!

Partially Implicit Runge-Kutta 0.030 -5 0.025 -6 0.020 -7 0.015 -8 0.010 -9 0.005 0.000 -10 2 4 6 8 10 0

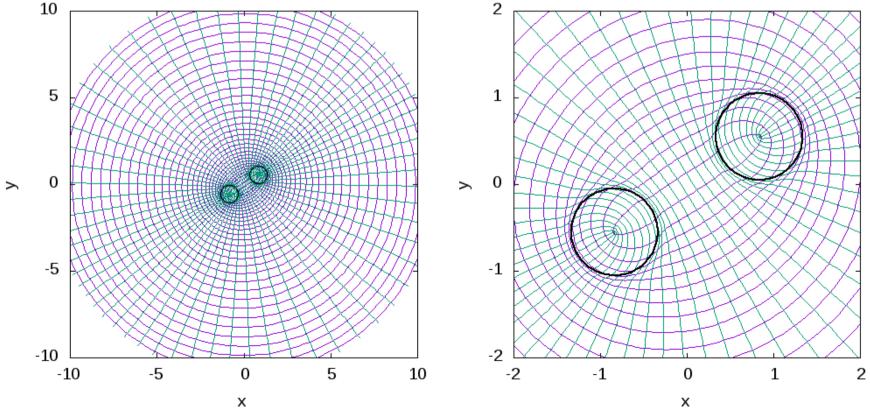
$$\partial_t^2 u = \partial_r^2 u + \frac{2}{r} \partial_r u$$

... but new algorithms handle singular terms and stabilize the numerics, even when solving Einstein's equations (E.g., Baumgarte et al's 3+1 BSSN in Spherical Polar Coords, PhysRevD.87.044026)

New Goals for Numerical Relativity

• Handle arbitrary, dynamical coordinate systems

- Even those with coordinate singularities
- 200—2,000x speed-up, supercomputer → desktop!

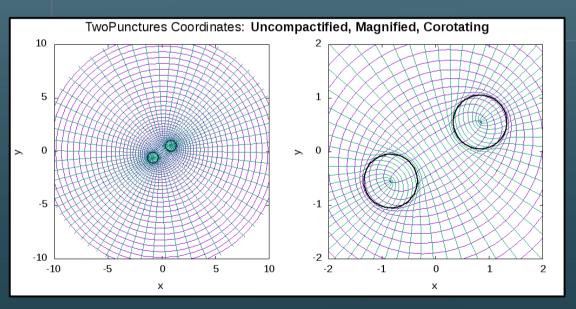


SENR: A Super-Efficient Numerical Relativity Code for the Age of Gravitational Wave Astrophysics

> Zachariah B. Etienne Ian Ruchlin

> in collaboration with

Thomas W. Baumgarte

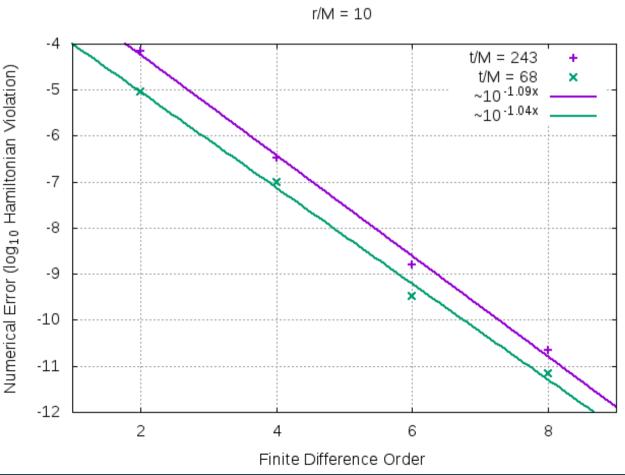


SENR Design Philosophy

- Open Source, Open Development → <u>Greater Adoption</u>
 - <u>http://tinyurl.com/senrcode</u>
- Algorithmic Simplicity → <u>More Science Faster</u>
 - Easier to debug & extend
 - Build on tried & true algorithms
 - BSSN in Spherical Polar Coords techniques pioneered by T. Baumgarte et al
 - SENR: Extend ideas to support arbitrary, *dynamical* coords
- Memory Efficiency Is Key Focus: <u>Unlock the Desktop</u>
 - Get public involved → ~10,000x more GW throughput!
- Bottom line: <u>Maximize science with minimal human & computational</u> resources

SENR Results: Convergence to exact solution, even for black holes!

Simulating black hole without excision: Numerical errors converge to zero exponentially with increased polynomial approximation order!



- Electromagnetic counterparts to gravitational wave observations are likely!
- Enormous improvements will be necessary for numerical relativity to maximize the science from such observations
- The GiRaFFE & SENR (Super Efficient Numerical Relativity) codes aim to be big steps in this direction
- Stay tuned on our progress:

http://tinyurl.com/senrcode