A machine learning approach to infer the accreted stellar mass fractions of central galaxies in the TNG100 simulation

Title A machine learning approach to infer the accreted stellar mass fractions of central galaxies in the TNG100 simulation
Publication Type Journal Article
Year of Publication 2022
Authors Shi, R, Wang, W, Li, Z, Han, J, Shi, J, Rodriguez-Gomez, V, Peng, Y, Li, Q
Journal \mnras
Date Published jun
Keywords Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics, cosmology: dark matter, galaxies: evolution, galaxies: statistics, galaxies: stellar content, method: data analysis, method: numerical
DOI 10.1093/mnras/stac1541
English